
Detection of exudates in fundus photographs
with imbalanced learning using conditional
generative adversarial network

RUI ZHENG,1,5 LEI LIU, 2,5 SHULIN ZHANG,1 CHUN ZHENG,3 FILIZ
BUNYAK,4 RONALD XU,1 BIN LI,2 AND MINGZHAI SUN1,*

1Department of Precision Machinery and Instrumentation, University of Science and Technology of China,
Hefei, Anhui 230022, China
2Department of Electronic Engineering and Information Science, University of Science and Technology of
China, Hefei, Anhui 230022, China
3The 105 Hospital of PLA, Hefei, Anhui 230031, China
4Department of Computer Science, University of Missouri, Columbia, MO 65211, USA
5These two authors contribute equally to the study
*mingzhai@ustc.edu.cn

Abstract: Diabetic retinopathy (DR) is a leading cause of blindness worldwide. However, 90%
of DR caused blindness can be prevented if diagnosed and intervened early. Retinal exudates
can be observed at the early stage of DR and can be used as signs for early DR diagnosis. Deep
convolutional neural networks (DCNNs) have been applied for exudate detection with promising
results. However, there exist two main challenges when applying the DCNN based methods
for exudate detection. One is the very limited number of labeled data available from medical
experts, and another is the severely imbalanced distribution of data of different classes. First,
there are many more images of normal eyes than those of eyes with exudates, particularly for
screening datasets. Second, the number of normal pixels (non-exudates) is much greater than
the number of abnormal pixels (exudates) in images containing exudates. To tackle the small
sample set problem, an ensemble convolutional neural network (MU-net) based on a U-net
structure is presented in this paper. To alleviate the imbalance data problem, the conditional
generative adversarial network (cGAN) is adopted to generate label-preserving minority class
data specifically to implement the data augmentation. The network was trained on one dataset
(e_ophtha_EX) and tested on the other three public datasets (DiaReTDB1, HEI-MED and
MESSIDOR). CGAN, as a data augmentation method, significantly improves network robustness
and generalization properties, achieving F1-scores of 92.79%, 92.46%, 91.27%, and 94.34%,
respectively, as measured at the lesion level. While without cGAN, the corresponding F1-scores
were 92.66%, 91.41%, 90.72%, and 90.58%, respectively. When measured at the image level,
with cGAN we achieved the accuracy of 95.45%, 92.13%, 88.76%, and 89.58%, compared with
the values achieved without cGAN of 86.36%, 87.64%, 76.33%, and 86.42%, respectively.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

According to 2016 WHO report, from 1980 to 2014 the number of adults living with diabetes
has risen from 108 million to 422 million with the global prevalence increasing from 4.7% to
8.5% [1]. Among many complications that diabetes leads to, diabetic retinopathy (DR) is a
significant cause of blindness. In 2010, DR caused 2.6% of blindness [2]. DR occurs as a result
of long-term accumulated damages to the small blood vessels in the retina. After 20 years of
diabetes, nearly all patients with Type I diabetes and >60% of patients with Type II diabetes have
some degree of retinopathy [3]. At the early stage of DR, patients may not have any symptoms of
vision problems. However, when it develops to the late stage, it may permanently cause vision

                                                                                 Vol. 8, No. 10 | 1 Oct 2018 | OPTICAL MATERIALS EXPRESS 4863 

#337886 https://doi.org/10.1364/BOE.9.004863 
Journal © 2018 Received 9 Jul 2018; revised 29 Aug 2018; accepted 2 Sep 2018; published 14 Sep 2018 

https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.9.004863&domain=pdf&date_stamp=2018-09-14


loss and blindness. Therefore it is important for diabetic patients to have a comprehensive retina
screening at least once a year. It is shown that blindness due to DR can be prevented in 90% of
the cases by early detection through regular screening [4].
Fundus photography is the most commonly used and effective way of screening for diabetic

retinopathy. Ophthalmologists look for early signs of DR such as exudates. Exudates are lipid
and lipoprotein deposits that appear near leaking capillaries within the retina. They develop at
the early stage of DR and may appear as yellow areas with variable sizes from a few pixels to as
large as the optic disc (Fig. 1).

Fundus images are usually examined by ophthalmologists. However, due to the limited number
of the eye doctors and the massive screening population, many computer-aided diagnosis systems
(CAD) have been developed to automatically detect the typical pathological signs of DR in the
hope of improving the screening efficiency and releasing the expensive medical resources. The
sensitivity and accuracy of the CADs are critical for the early diagnosis. However, the low
contrast, irregular shapes, and sparsity of the early signs of DR pose enormous challenges to the
analysis methods.

Fig. 1. Retinal image with exudates.

Deep convolutional neural networks have been proven to outperform conventional image
analysis methods in many aspects, especially because they do not require explicit feature extraction.
Recently, deep learning methods were applied to detect exudates in color fundus photographs
and showed promising results although the highest reported sensitivity and accuracy were still
lower than those using the state-of-the-art conventional image analysis methods [5–8]. For
example, the deep learning method in [5] obtained a maximum sensitivity of 81.35% while the
conventional method in [8] achieved a sensitivity of 92.42% both on the DIARETDB1 dataset [9].
The performance of the deep learning methods is mainly limited by two challenges. One is the
limited expert labeled training data to train network, and the other is the severely imbalanced
representations of different classes.
Limited expert-labeled data is a general problem in the medical image analysis field since it
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is usually costly to acquire the ground truth data. Imbalanced dataset manifests itself in two
aspects. One is that there are much fewer images of pathological conditions than those of normal
conditions. This is particularly true for datasets acquired during the massive screening, such
as the DR screening. In these datasets majority of the images do not contain any pathological
conditions. The other aspect of the imbalanced data is that the number of abnormal pixels is much
less than that of the normal pixels. For example, in the image with only a few exudates, more
than 98% of the pixels are normal with about 2% are abnormal pixels. This severely imbalanced
representation of different classes renders great challenge for constructing a robust and reliable
neural network with good generalization property.

To address the problems discussed hereinbefore, we developed an ensemble deep convolutional
neural network (MU-net) based on the U-net framework that was mainly designed for medical
applications with limited ground truth data. Furthermore, to solve the imbalanced class problem,
we applied the conditional generative adversarial network (cGAN) to augment the dataset and
specifically upsample the minority class. Our method significantly outperformed previous
methods and had good generalization property over different datasets.
The paper is organized as follows. In section 2, we provide a short overview of different

approaches used for exudate detection and discuss methods for imbalanced dataset learning. In
section 3, we present detailed explanations of our approach. We illustrate the results in section 4
with discussions and end the paper in section 5 with a short conclusion.

2. Related works

Automatic exudate detection in fundus images has been studied before, and many methods have
been developed, including traditional image processing methods and recent approaches based on
machine learning and neural networks. Thresholding methods based on global or local image gray-
level [10–13], and clustering-based image thresholding, such as Otsu thresholding [11, 13], have
been applied for exudate segmentation. Methods based on morphological operations [8, 14–18]
have also been explored. In these methods, dominant structures, such as blood vessels and
optic disc, were usually first identified and removed from the images to reduce the interference
with the exudate segmentation. Region growing method [19–22] has also been demonstrated
for automatic segmentation of exudates, particularly in combination with the artificial neural
network [22].

Machine learning based methods, such as linear discriminant classifiers [23,24], support vector
machine (SVM) [25, 26], Naive Bayes classifier [27] and random forest algorithm [28], have
been studied. Most of these methods consisted of building a feature vector for each pixel or pixel
cluster that was to be classified with a machine learning approach into exudates or non-exudates.
The features were usually based on the color, brightness, size, shape, edge strength, texture,
contextual information, etc. of the pixel clusters.
CNN has shown excellent performance in various applications including medical image

processing. Pavle et al. [29] constructed a 10-layer of a neural network for exudates detection.
In [5], Feng et al. applied a Fully Convolutional Neural Networks (FCN) to segment optic disc
and exudates. Fujita et al. [7] used a single convolutional neural network to detect exudates,
hemorrhages, and microaneurysms simultaneously. CNN based methods demonstrated great
promise in the fundus image analysis. However, compared to the conventional state-of-the-art
methods, the performance of CNN based approach, particularly with the best-reported sensitivity
of 81.35% on the DiaReTDB1 dataset [5], still has much room for improvement. The weaker
performance of the CNN based methods partially comes from the limited training data and the
significantly imbalanced class data.

Imbalanced data poses enormous challenges to many classifiers, most of which are optimized to
reduce global error rate without taking into consideration of data distribution. One straightforward
method to alleviate the class imbalance problem is to upsample theminority class or to downsample
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the majority class. Synthetic minority over-sampling technique (SMOTE) [30] is an excellent
method from this perspective. In this paper, we applied the cGAN framework to augment the
training dataset and to upsample the minority class specifically. Our results demonstrated that
this was an effective way to improve network robustness and generalization properties.

3. Proposed methodology

In this section, we presented the modified U-net (MU-Net) structure for exudate detection and
demonstrated applying conditional generative adversarial network(cGAN) to generate synthetic
images as a new method of data augmentation and minority class upsampling.

3.1. Image pre-processing

The images from different datasets were acquired with different types of fundus cameras, which
rendered different resolutions and signal-to-noise ratios (SNR). To reduce the image variation
from different datasets, we applied a pre-processing step before feeding the images to the neural
network. First, all the images were resized to 580×580 pixels. Second, only the green channel
from the original RGB images were processed since the green channels showed the highest
contrast of exudates from the background [31]. However, for the GAN training we used the
original RGB images. Third, an adaptive contrast enhancement technique [32] was applied to
improve the contrast of exudates on the retinal surface.

3.2. U-net and modified U-net (MU-net)

U-net was first proposed by Ronneberger [33] for biomedical image segmentation. It is a
supervised method based on Convolutional Neural Networks (CNNs). It was designed to produce
precise segmentation with a low number of training images, which was of particular importance
for medical image applications since it was usually costly to label a large number of the medical
images by medical experts.

Fig. 2. (a) Structure of the U-net; (b) A building block of the MU-net(MU-net block); (c)
MU-net consisting of 4 building blocks with different filter sizes.
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We constructed an U-net model with eleven convolutional layers (Fig. 2(a)). It had a
downsampling and an upsampling paths as shown in Fig. 2(a) and Table 1. In the downsampling
path, two convolutional layers both with a 3×3 kernel were followed by normalization and
dropout. A leaky rectified linear unit (LeakyReLU) instead of a rectified linear unit (ReLU) as
in the original study [33], was implemented as the activation function. LeakyReLUs allow a
small, non-zero gradient when a unit is not active [34]. A 2×2 max pooling with a stride of two
at each dimension was applied. In the upsampling path, similar to the downsampling path, two
3×3 convolutional layers were followed by a LeakyReLU activation. An upsampling layer with a
kernel size of 2×2 and stride of two in each dimension was applied and the output was fused with
the corresponding layers in the downsampling path. In the last layer a 1×1 convolution reduced
the number of output channels to 2. The input of the network was 48×48 image patches and the
output image size was the same as the input.

Table 1. U-net block Configuration

Downsampling path Output size Upsampling path Output size

Conv1 32 3×3 filters 48×48

Conv2 32 3×3 filters 48×48 Conv11 2 1×1 filters 48×48

Max pooling 2×2 24×24 Conv10 32 3×3 filters 48×48

Conv3 64 3×3 filters 24×24 Conv9 32 3×3 filters 48×48

Conv4 64 3×3 filters 24×24 Upsampling 2×2 48×48

Max pooling 2×2 12×12 Conv8 64 3×3 filters 24×24

Conv5 128 3×3 filters 12×12 Conv7 64 3×3 filters 24×24

Conv6 128 3×3 filters 12×12 Upsampling 2×2 24×24

Table 2. MU-net block Configuration

Downsampling path Output size Upsampling path Output size

Conv1 32 3×3 filters 48×48

Conv2 32 3×3 filters 48×48 Conv11 2 1×1 filters 48×48

Conv3 64 3×3 filters 48×48 Conv10 32 3×3 filters 48×48

Max pooling 2×2 24×24 Conv9 32 3×3 filters 48×48

Conv4 64 3×3 filters 24×24 Upsampling 2×2 48×48

Max pooling 2×2 12×12 Conv8 64 3×3 filters 24×24

Conv5 128 3×3 filters 12×12 Conv7 64 3×3 filters 24×24

Conv6 128 3×3 filters 12×12 Upsampling 2×2 24×24

To improve the performance of the original U-net, we constructed a modified U-net (MU-
net)(Fig. 2(c)), which was an ensemble of four MU-net blocks (Fig. 2(b)). The detailed
configuration of the MU-net block was listed in (Table 2). The four MU-net blocks differed in
the convolution kernel sizes (3×3, 4×4, 5×5 and 6×6)(Fig. 2(c)).
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3.3. Conditional Generative Adversarial Network (cGAN) as a data augmentation and
minority class upsampling method

Fig. 3. GAN+MU-net. The cGAN network was first trained to generate label preserving
synthetic images (with details of the training process described in the main context). The
synthetic image pair together with the real image pair from the training dataset were used to
train the GAN+MU-net.

GANs are generative adversarial networks proposed in [35–39]. In the unconditioned GAN, the
generator G is trained to map from a random noise vector z to the output vector y : G : z → y so
that the synthetic vector y is indistinguishable from the real vector as tested by an adversarially
trained discriminator D. In conditional GANs (cGAN) [39], besides the random noise vector z,
an observed image x is also supplied as the inputs. CGANs learn a mapping from the observed
image x and the random noise vector z, to y : G : {x, z} → y by optimizing the following
objective function:

G∗ = arg min
G

max
D
LcGAN (G,D) + λLL1 (G) (1)

where
LcGAN (G,D) =E(x,y)∼pdata (x,y)[logD(x, y)]

+ Ex∼Pdata (x),z∼pz (z)[log(1 − D(x,G(x, z)))]
(2)

LL1 (G) = E(x,y)∼pdata (x,y),(z)∼pz (z)[‖y − G(x, z)‖1] (3)

We adapted the cGAN architecture from pix2pix in [39]. Two key features of the pix2pix
framework were U-net [33] based generator and a Markovian discriminator (PatchGAN). The
U-net based generator allowed low-level image information to shortcut across the network to
achieve more realistic images.
During the training phase, the input of the pix2pix network was an image pair of the

original RGB image with the corresponding binary ground truth image from the training set in
e_ophtha_EX (Fig. 3). The training set for the pix2pix is the same as the training set of the U-net,
MU-net block and MU-net. All the weights were initialized from a Gaussian distribution with
mean 0 and standard deviation 0.02. To optimize the network, we alternated between one gradient
descent step on the discriminator D, then one step on the generator G [39]. We applied the Adam
solver [40], with learning rate of 0.0002, and the momentum parameters β1 = 0.5, β2 = 0.999.
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The pix2pix network was trained for 350 epochs with batch size of 1. During the image generation
phase, the input of the pix2pix network was a binary ground truth image from the training set,
and the output was a synthetic image that was similar to but different from the input of the
network. We applied the trained pix2pix network to all the 60 binary ground truth images in the
e_ophtha_EX dataset to generate 60 synthetic images. Then we train the pix2pix for a second
time independently without using the first trained weights. After that, with the second time
trained pix2pix we generate another 60 synthetic images. Majority of the synthetic images were
very similar to the real images in the sense of general looking and appearance of exudates, but
some with obvious artifacts as shown in Fig. 4. This is consistent with previous studies that some
GAN generated images are far from realistic images, which was noted before and thought as a
general problem of GAN [39]. In total, 120 synthetic images were generated, among which 86
images with no artifacts were selected.

Fig. 4. Synthetic images generated using cGAN. (a) and (b) were the labeled binary images
with the corresponding synthetic images (c) and (d) respectively. (c) was a good synthetic
image that was similar to the real image in the sense of general looking and appearance of
exudates, while (d) showed some artifacts. The inset in (d) was the enlarged version of the
white rectangle area. The green spots were due to the falsely generated colors in the RGB
channels.

3.4. Training and testing of the networks

It is worth to note that training of the networks was done only with the e_ophtha_EX dataset. All
the other three datasets were to evaluate the network performance only.
In the e_ophtha_EX dataset, there are 82 labeled images of which 47 images consisting of

exudates. During the training phase, 60 images (35 with and 25 without exudates) were used as
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the training images, and the other 22 images (12 with and 10 without exudates) were used as the
testing images.
To fully utilize the limited data, we applied a patch-based training process. We partitioned

the image pair (the green channel of original RGB image and the corresponding ground truth
image) into patches of size of 48×48. We used two different partitioning approaches: selective
partitioning and uniform partitioning, and we named the generated patches as "selective patches"
and "uniform patches". For the selective partitioning, we randomly selected a pixel from the
set of the exudate pixels of an image. With the selected exudate pixel (xi, yi) as the reference
point, we got a 48×48 block of the image {(xi−23, yi−23), (xi−22, yi−22), ..., (xi+24, yi+24)}. This
approach ensured that the selected patch contained exudate pixels. Patches selected this way may
overlap. Similarly, to do the uniform partition, the images were uniformly spliced into patches of
size of 48×48. Since there was only a small percentage of the image pixels were exudate pixels,
the majority of the uniform patches did not consist of exudate pixels.
We applied a two-stage training process for the U-net, MU-net block, MU-net and the

GAN+MU-net.
For the U-net, MU-net block and the MU-net, at the first stage, 67,200 patches were used to

train the networks. 75% of these patches (50,400 patches) were selective patches(with exudates),
and 25% of them were uniform patches. We experimented the ratio between the selective and the
uniform patches and empirically found this one rendered the best results. Obviously, at this stage,
the minority class (exudate pixel) was upsampled to alleviate the imbalanced data problem. At
the second stage, 47,040 uniform patches were generated and used to fine tune the network. The
purpose of the second stage training was to enhance the diversity of the samples and to reduce
the false positive detections.
For the GAN+MU-net, besides the 60 training images from the e_ophtha_EX dataset, we

also included 86 synthetic images without artifacts as described previously. During the training,
61,320 (75%) selective and 20,440 uniform patches were applied at the first training stage, and
114,464 uniform patches were applied at the second training stage.

For all the training at both stages, we applied stochastic gradient descent with a batch size
of 64, a momentum of 0.3, and weight decay of 10−6. We initialized the weights in each layer
from a zero-mean Gaussian distribution with a standard deviation of 0.01. The learning rate was
initialized to 0.01. Dropout was applied to alleviate overfitting, and the rate was set to 0.2. We
trained 400 epochs at the first stage and fine-tuned the networks at the second stage for another
400 epochs.

All the trained networks were tested using the left 22 images in the e_ophtha_EX dataset to
evaluate the performance. Besides, MU-net and GAN+MU-net were further tested on the other
three datasets (DiaReTDB1, HEI-MED, and MESSIDOR) to assess the generalization property
of the networks.

4. Experimental results

4.1. Datasets

We used four public datasets in the study: e_ophtha_EX [28], DiaReTDB1 [9], HEI-MED [26]
and MESSIDOR [41]. However, training of the networks was done only with the e_ophtha_EX
dataset, while the other three were used to test the performance of the networks.
The e_ophtha_EX dataset consists of 82 fundus images with four different image sizes of

1440×960 or 1504×1000 or 2544×1696 or 2048×1360 pixels. All images were acquired with a
45-degree field of view. Forty-seven of the images have exudates that were carefully marked by
two ophthalmologists. The other 35 images do not contain exudates.

The DiaReTDB1 dataset contains 89 images with an image size of 1500×1152 pixels. All the
images were captured using the same 50-degree field-of-view digital fundus camera with varying
imaging settings. 26 images contain exudates in the dataset with labled groundtruth [42].

                                                                                 Vol. 8, No. 10 | 1 Oct 2018 | OPTICAL MATERIALS EXPRESS 4870 



The HEI-MED dataset consists of 169 fundus images that are representative of a various
degree of diabetic macular edema (DME) with a resolution of 2196×1958 pixels and with a 45
Field of View (FOV). All the images were captured with a Zeiss Visucam PRO fundus camera.
115 images are considered as normal retinal images and 54 retinal images are diagnosed with
diabetic macular edema. 54 images contains exudates with labeled groundtruth while 115 images
have no exudates [26].
The MESSIDOR dataset is the largest fundus image database, which contains 1200 TIFF

images with three different image sizes, 1440×960, 2240×1488 and 2304×1536 pixels. All
the images were acquired using a color video 3CDD camera on a TopCon TRC NW6 with a
45-degree field of view. 800 images were acquired with pupil dilation and 400 without dilation.
There are 226 images consisting of exudates and 974 images without exudates [26]. However,
labeled exudates were not provided. To perform the detailed evaluation of the proposed system
for exudate detection, we manually annotated the exudate pixels of the 226 images with the help
of two ophthalmologists. Labels at the image level, i.e., whether an image containing exudate
or not, were labeled for all the 1200 images. Our manually annotated dataset is available upon
request.

4.2. Evaluation metrics

We evaluated the performance of the proposed methods based on both lesion level [43] and image
level measurements [44]. For the lesion level evaluation, we compared the predicted candidates
with the truly labeled exudates provided in the datasets. Instead of directly counting the number
of pixels that were correctly classified or misclassified, we applied the approach based on set
operations [28, 43]. Briefly, if the two sets had enough overlap as controlled by an overlapping
factor σ, which was set to 0.2 in our study, the same as in [28], the candidates were considered
correctly classified. We computed the sensitivity, precision and the F1-score according to the
equations defined in Table 3.

Table 3. Definitions of the evaluation metrics

Performance Measure Mathematical Formula

Accuracy (TP+TN)/(TP+TN+FN+FP)

Sensitivity TP/(FN+TP)

Specificity TN/(FP+TN)

Precision TP/(FP+TP)

F1-Score 2*TP/(2*TP+FP+FN)
1 TP stands for true positive; FP: false positve; TN: true
negtive; FN: false negative.

For the image level evaluation, we applied the method proposed in [44]. One of the goals
of the study is to develop an exudate detector, indicating whether or not an image is normal,
i.e., free of exudates, or abnormal, i.e., containing one or more exudates. Thus we define a true
negative image as an image without any exudates and the program does not detect any suspicious
candidates. A true positive image is an image with exudates and the program detects candidate
lesions, among which at least one candidate lesion is correctly detected as measured with the
previously described lesion level criteria. A false positive image is defined as an image that has
no exudates, but the program falsely detects candidate lesions. A false negative image is an
image that consists of exudates but the program does not detect any candidate; or the program
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detects candidates but none of the candidate lesions has enough overlap with the corresponding
ground truth labels as evaluated using the lesion level criteria [28].

4.3. MU-net significantly improved exudate segmentation

Table 4. Evaluation of the performance of U-net, MU-net block, MU-net and GAN+MU-net
at the lesion level. It was evaluated using the 22 test images (12 images with and 10 without
exudates) in the e_ophtha_EX dataset.

Accuracy Specificity Sensitivity Precision F1-score

U-net 99.94% 99.97% 83.49% 85.16% 84.32%

MU-net block 99.95% 99.97% 92.60% 89.67% 91.11%

MU-net 99.96% 99.98% 94.12% 91.25% 92.66%

GAN+MU-net 99.97% 99.99% 90.94% 94.72% 92.79%

Compared with the original U-net, our MU-net block clearly outperformed the original U-net
by a large margin as tested both on the lesion level and image level (Table 4 and 5). F1-score
of MU-net was 1.5% higher than MU-net block, demonstrating that the combination of four
MU-net blocks could improve the performance of the network. The sensitivity of MU-net was
more than 10% higher than that of the original U-net, and the precision and F1-score were more
than 6% higher. On the image level, the accuracy of MU-net was more than 22% higher than the
original U-net.

Fig. 5. (a) ROC curves of the U-net, MU-net block, MU-net and GAN+MU-net. (b)
Precision-Recall curves of the four networks. GAN+MU-net had the highest AUCs as
calculated either with the ROC curves or the Precision-Recall curves.

Figure 5 showed the ROC and the Precision-Recall(P-R) curves with the AUCs of the U-net,
MU-net block, and MU-net. The AUCs of the MU-net block calculated both using the ROC and
the P-R curves were higher than those of the U-net. The AUCs of the MU-net were also higher
than MU-net block. The curves of the MU-net completely enclose of the U-net, demonstrating
that the MU-net outperforms the U-net by a large margin.
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Table 5. Evaluation of the performance of the U-net, MU-net block, MU-net and GAN+MU-
net at the image level using the 22 test images in the e_ophtha_EX dataset.

True False Accuracy

U-net 14 8 63.64%

MU-net block 17 5 77.27%

MU-net 19 3 86.36%

GAN+MU-net 21 1 95.45%
1 True contains TP and TN and False contains FP and FN.

4.4. cGAN improved the performance of MU-net in exudate segmentation

To further resolve the imbalanced data problem, we applied the cGAN framework to generate
synthetic images consisting of exudates. In Fig. 4, the first row showed the ground truth binary
images from the training dataset and the second row showed the generated synthetic images
using the cGAN method. Majority of the generated images consist of very realistic exudates
(Fig. 4(c)), but some generated exudates showed artifacts (Fig. 4(d)). This is consistent with
previous studies that some GAN generated images are far from realistic images, which was noted
before and thought as a general problem of GAN [39]. The synthetic images together with the
true images from the training dataset(Fig. 3) were used to train the MU-net, which we named it
as GAN+MU-net.

Table 6. Comparison of the performances at the lesion level of theMU-net and GAN+MU-net
using different testing datasets to test the generalization property of the networks.

Database Methodology Accuracy Specificity Sensitivity Precision F1-Score

e_ophtha_EX MU-net 99.96% 99.98% 94.12% 91.25% 92.66%

GAN+MU-net 99.97% 99.99% 90.94% 94.72% 92.79%

DiaRetDB1 MU-net 99.96% 99.98% 91.72% 91.10% 91.41%

GAN+MU-net 99.97% 99.98% 93.94% 91.02% 92.46%

HEI-MED MU-net 99.94% 99.97% 91.02% 90.39% 90.72%

GAN+MU-net 99.95% 99.98% 90.67% 91.88% 91.27%

MESSIDOR MU-net 99.95% 99.97% 91.46% 89.72% 90.58%

GAN+MU-net 99.96% 99.99% 95.33% 93.38% 94.34%

Table 4 showed the comparison of MU-net and GAN+MU-net. Both the precision and F1-score
were significantly increased in GAN+MU-net though the sensitivity of GAN+MU-net decreased.
However, on the image level, GAN+MU-net performed significantly better than MU-net with
more than 9.06% of increase of the accuracy (Table 5). The AUCs of the GAN+MU-net were
also higher than those of the MU-net (Fig. 5).
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Table 7. Comparison of the performances of MU-net and GAN+MU-net on different testing
datasets evaluated at the image level.

Database Network True False Accuracy

e_ophtha_EX MU-net 19 3 86.36%

GAN+MU-net 21 1 95.45%

DiaRetDB1 MU-net 78 11 87.64%

GAN+MU-net 82 7 92.13%

HEI-MED MU-net 129 40 76.33%

GAN+MU-net 150 19 88.76%

MESSIDOR MU-net 1037 163 86.42%

GAN+MU-net 1075 125 89.58%

True contains TP and TN and False contains FP and FN.

4.5. cGAN improved the generalization property of the MU-net

Generalization property is an important measure of the performance of a network. It reflects how
well the trained network can be applied to similar but different datasets. We applied the trained
MU-net and GAN+MU-net on the other three public datasets.

Table 6 and Table 7 showed the comparison results of MU-net and GAN+MU-net as evaluated
using lesion level and image level measurements. In general, GAN+MU-net method outperformed
MU-net in segmenting exudates. Specifically, GAN+MU-net achieved segmentation accuracy
on image level of 92.13% on DiaRetDB1 dataset, 88.76% on HEI-MED dataset, and 89.58%
on the MESSIDOR dataset, which were more than 4%, 12%, and 3% higher than that of the
MU-net as shown in Table 7, respectively. On the lesion level, GAN+MU-net also showed
improved performance, especially as measured by the more comprehensive F1-score (Table 6).
It is conclusive that GAN+MU-net has better generalization property than MU-net.

5. Discussion

Detection of exudates is important in preventing DR caused blindness. In the study we sought to
develop a deep convolutional neural network based method for automatic exudate detection. In
order to alleviate the two challenges – limited expert labeled training data and imbalanced class
data – we developed an ensemble MU-net and a cGAN based data augmentation and minority
class upsampling method.
Our proposed MU-net significantly improved exudate segmentation. The MU-net was an

ensemble of four MU-net blocks (Fig. 2(b) and Table 2). In the MU-net blocks, the max pooling
layer was rearranged to the deeper layer of the network. Max pooling layer is useful for dimension
reduction and helps make the learned features more invariant to small translations of the input [45],
which is important for feature detection. However, positional information of a local maximum is
lost after the max pooling operation. Such information is critical for accurate localization of the
features. To preserve the position information, we applied the max pooling layer after the third
convolution layer instead of the second one as in the original U-net.

Besides, MU-net was an ensemble network. We applied the bootstrap aggregating (Bagging)
method [46] to improve the performance of the network in detecting exudates. Bagging
is a powerful and reliable method for reducing generalization errors. Differences in model
initialization or convolution kernel sizes, or selections of mini-batches are often enough to cause
different members of the ensemble to make partially independent errors. As a result, neural
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networks usually benefit from model averaging even if all of the models are trained on the same
dataset. In our case, we constructed four MU-net blocks with the only difference in convolution
kernel sizes (3×3, 4×4, 5×5 and 6×6). Convolutional layers with different kernel sizes have
different receptive field and obtain different features. By averaging the four MU-net blocks, more
detailed information was extracted and the network generalization error was reduced [47].
Over-fitting is a common problem for neural network models, especially for deep learning

method that has a large number of parameters. In the medical image analysis, in addition to the
constraint of the limited labeled data, extremely imbalanced class data renders another layer of
difficulty. Imbalanced data has detrimental effects on the performance of classifiers usually by
introducing significant biases and reducing the generalization property of the classifier.
Data augmentation is an effective way to increase the size of the training dataset and reduce

the degree of the over-fitting problem. By applying transformations, such as elastic distortion
or affine transformation to the original data, data augmentation artificially increases the size of
the training set [48]. However, conventional data augmentation methods do not solve the class
imbalance problem. In the paper, we applied a cGAN framework not only for generating synthetic
data but also as a method to upsample the minority class. GAN+MU-net significantly improved
the segmentation performance and the generalization property of the MU-net. Compared with
conventional data augmentation method, cGAN was able to generate synthetic images consisting
of exudates (the minority class), which significantly alleviated the imbalanced class problem and
improved the generalization property of the network.

Table 8. Comparison of the performances of our method with previous published methods
using the four public datasets

Database Methodology Accuracy Specifity Sensitivity Precision

e_ophtha_EX Moazam et al. [8] 89.25% 94.60% 81.20% 90.91%

Zhang et al. [28] −− −− 74% 79%

Proposed 99.97% 99.99% 90.94% 94.72%

DiaRetDB1 Moazam et al. [8] 87.72% 81.25% 92.42% 87.14%

Rajan et al. [49] 85.39% 85% 86.2% −−

Araujo et al. [50] 99.25% 99.44% 80.83% 15.57%

Proposed 99.97% 99.98% 93.94% 91.02%

HEI-MED Moazam et al. [8] 95.77% 96.41% 94.63% 93.72%

Akram et al. [51] 92.5% 94.7% 96.1% −−

Ali et al. [52] −− −− −− 82.6%

Proposed 99.95% 99.98% 90.67% 91.88%

MESSIDOR Agurto [53] 85.2% 90.2% 80.9% −−

Moazam et al. [8] 98.36% 96.41% 94.63% 92.72%

Proposed 99.96% 99.99% 95.33% 93.38%

We compared our results with recent published literatures on exudate detection (Table 8). In
the study we tested our method using four public datasets. Some of the listed methods in Table 8
only applied on one of the datasets and not all the evaluation metrics were calculated. All the
listed studies applied the same lesion level evaluation [43] method as in our study. From the
table, it was clear that our proposed GAN+MU-net surpassed most of the methods except the one
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proposed by Moazam et al. [8] on the HEI-MED dataset, although on all the other three datasets
our method showed better performance than theirs. First, the color of the images in HEI-MED
was much different from the e_ophtha_EX dataset, which may deteriorate the performance of
the network that was trained on the e_ophtha_EX dataset. Second, in [8], the authors trained
the network using the HEI-MED dataset and tested the performance on the same dataset, which
usually gave better performance.

Limited expert labeled data and imbalanced data distribution are common problems encountered
in medical image analysis based on DCNN. The proposed method with cGAN was able to
oversample the minority class without the requirement of heuristic modeling of the class.
Therefore, although we applied the method on fundus image processing, it is readily applied to
other medical image analysis. The drawback of this approach is that it requires a training phase
of the cGAN. However, once it is trained, the minority class with preserved labels can be easily
and effectively generated.

As we have been writing the paper, we note that recent study by Douzas [54] came to the same
conclusion, demonstrating that conditional generative adversarial networks could be an effective
data augmentation method for imbalanced learning.
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